-
Cenovalı gemicidir (1451'e doğru-1506). Orta halli bir dokumacının oğlu olan Kristof Kolomb, 1451'e doğru Cenova'da doğdu ve 1476'da Lizbon'a yerleşti. O dönemde Dünya'nın yuvarlak olduğundan artık kimsenin kuşkusu kalmamıştı ve ilk defa Kristof Kolomb, Atlas Okyanusu'ndan geçerek denizden Asya'ya bir yol bulmayı akıl etti: o tarihe kadar hiç kimse, böylesine uçsuz bucaksız denizlere atılmağa cesaret edememişti.
En Büyük Gezi
Portekiz kralı, Kristof Kolomb'un bu tasarısını bir maceraperestlik saydığı için yardımcı olmak istemedi. Sonunda, İspanya'nın Katolik hükümdarları Kastilyalı İzabella ile Aragonlu Ferdinand, ilk seferin üç gemisini sağlayarak Kolomb'un gezisini desteklediler. Bu, tarihin en büyük keşif gezisi oldu, çünkü iki ay süren bir deniz yolculuğundan sonra Amerika kıyıları açıklarında Bahama Adaları'ndan birine ulaşılmasını sağladı (12 Ekim 1492).
Bundan sonra Kolomb, Orta Amerika'ya üç yolculuk daha yaptı (1493'ten 1504'e kadar). Ama sonunda, «Yeni Dünya»nın keşfi, onun açısından, başlangıçtaki tasarılarına oranla tam bir yenilgi oldu: çünkü asıl amacı, onu doğunun zenginliklerine ulaştıracak yeni bir yol bulmaktı.
Karavelalar
İlk sefer için üç gemi donatıldı: Nina, Pinta ve Santa Marie. Bu sonuncusu, Kolomb'un amiral gemisiydi. Daha hızlı olan Pinta başta gidiyordu ve Rodrigo de Triana adında bir gemici, 11 Ekim 1492 günü akşamı ilk defa Amerika kıyılarını görmüş ve «Kara! Kara!» diye bağırmıştı.
[Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ]
Kristof Kolomb'un portresi. İspanya hükümdarları bir sözleşmeyle ona, babadan oğula geçmek üzere «okyanus amirali» unvanı verdiler ve onu, keşfedeceği bütün toprakların genel valiliğine atadılar; bu. seferlerden getireceği altının ve baharatın onda biri de onun olacaktı. Eğer bu sözleşmeye uyulsaydı, Kolomb ve onun mirasçıları, batının en zengin prensleri olurdu. Cenova Deniz Müzesi.
-
Johannes Gensfleisch, «Gütenberg» denir, tipografi tekniğinin bulucusudur (1394-1468). Gütenberg, çoğu kişilerin sandığı gibi basımcılığın değil (basımcılık ondan çok önceleri de vardı) tipografi'nin, yani her biri küçük bir blok üzerine kazılmış ayrı ayrı harflerle sözcükler yazma tekniğinin bulucusudur. Bu harf blokları önce tahtadan, sonra da dayanıklı madenlerden yapıldı. Gütenberg daha sonra, kurşun harflerle dizilmiş sayfaları çoğaltmak için basım tekniğinden yararlandı.
Buluşunu yeterince geliştirebilmek için bir bankacı olan Johann Fust ile ortaklık kurdu ve gerekli parayı ondan sağladı. Gütenberg ile birlikte çalışan ve işin tekniğini iyice öğrenen Peter Schoffer çelik üzerine kabartma harfler kazımayı, sonra bu harfleri başka bir maden üzerine basarak elde edilen izlere kurşun akıtmayı tasarladı. Bunu yapmak için de, elle çalışan bir döküm kalıbı icat etti. Özel matbaa mürekkebini yapan da gene Schoffer'dir.
Bankacının Yerine Bir Başpiskopos
Ortaklığın kuruluşundan birkaç yıl sonra Gütenberg, Fust'un açtığı bir dava sonucunda her şeyini kaybetti: âletlerini, baskı makinelerini (rehin vermek zorunda kalmıştı), hattâ ilk eseri olan ve «kırk iki sabırlı» denilen (çünkü her sayfada 42 satırlık bir metin bulunuyordu) Kutsal Kitap'tan gelecek kazancı bile.
Gütenberg ömrünün son yıllarında Mainz (doğduğu şehir) başpiskoposunun himayesine girdi; başpiskopos ona soyluluk unvanı verdiği gibi, basım çalışmalarına yeniden başlaması için gerekli imkânları da sağladı.
Gütenberg'in buluşu, o zamana kadar yalnız manastırlarda basılan metinlerin çoğaltılmasına ve halka ulaşmasına imkân verdi. Böylece bütün bilgiler din adamlarının tekelinden çıkmış oluyordu. Temel eserleri okuyabileceklerin sayısı birkaç yüzü geçmezken, tipografi sayesinde kısa sürede binlerce kişiyi buldu.
-
Eski mitolojinin en ünlü kahramanı. Yunanlılar «Herakles», Romalılar «Herkül» derdi. Efsaneye göre Herkül tanrılar kralı Zeus (Jüpiter) ile bir basit ölümlünün oğludur. Çok küçüklüğünden beri olağanüstü gücüyle ve soğukkanlılığıyla çevresini şaşırtmıştır: henüz beşikteyken tanrıça Hera'nın onu öldürmek için yanıbaşına bıraktığı iki yılanı elleriyle boğmuştu.
Çeşitli serüvenlerden sonra Thebai kralının kızı Megara ile evlendi. Ama günün birinde, bir çılgınlık nöbeti geçirerek karısını da, çocuklarını da öldürdü. Bu cinayetinden dolayı tanrılar onu, on iki iş (başarı) yapmağa mahkûm ettiler.
Herkül'ün Yaptığı İşler
Bir gürz ve bir yay ile efsane hayvanlarını yendi: Nemea vadisine dehşet salan bir aslanı, dokuz tane zehirli yılan başı bulunan Lerne hidrasını, tam bir yıl süreyle kovaladığı Keryneia geyiğini, Erymanthos yabandomuzunu, Stymphalos Gölü'nün kuşları olan, tunç gagalı ve pençeli kocaman kartalları, Minos'un Girit boğasını, köpek Kerberos'u öldürdü.
Augeias'ın kocaman ahırlarını temizlemek, tiran Diomedes'i öldürmek, Amazon Hippolyte'in kemerini ele geçirmek, Hesperis'lerin bahçesindeki altın elmaları toplamak, dev Geryon'un sürülerindeki öküzleri yakalamak da hep ona düşen işlerdi. Yunanlılar ona daha birçok yiğitlikler atfettiler: Kentauroslarla dövüşmüş, dev Atlas'ı kurtarmak için göğü omuzlarında kaldırmış, Kalpe ve Abila dağlarını birbirinden ayırmıştır (Herkül sütunları, Cebelitarık Boğazı'nı meydana getirir).
Ama ikinci karısı Deianeira Herkül'ün çapkınlıklarını kıskanarak ona, zehirli bir iksire batırılmış elbise giydirdi; bu korkunç ıstıraptan kurtulmak için de Herkül, kendini bir odun ateşinin alevleri arasına fırlattı. Zeus onu Olympos Dağı'na aldı.
«Herkül gibi» deyiminden de anlaşıldığı gibi güçlülük simgesi olan Herkül, çağlar boyunca ressamlara ve heykeltıraşlara konu olmuştur.
[Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ]
«Antaios'un Nefesini Kesen Herkül». Antonio del Pollaiolo'nun eseri. Uffizi Müzesi, Floransa. Herkül, Antaios adlı bu devi üç kere altetmiş, ama bu kanlı canavar toprağa değer değmez yeniden canlanmıştır. Bu mucizeli gücün sırrını çözen Herkül, rakibinin ayaklarını yerden keserek onu boğmayı akıl edecektir.
-
XIV. ve XV. yüzyılda Fransa ile İngiltere'yi karşı karşıya getiren çatışmadır. Fransızlarla İngilizleri 1337'den 1453'e kadar, yani gerçekte yüz on altı yıl süreyle karşı karşıya getiren çatışmaya «Yüzyıl Savaşları» adı ancak son yüzyılda verilmiştir. Bu adlandırma pek de yerinde sayılamaz, çünkü yüz yılı aşkın bir zaman sürüp giden gerçek bir savaş değil, art arda bir dizi barış evresiyle bir dizi askerî harekâtın birbirini izlemesi söz konusudur.
Bir Derebeylik Kavgası
XIV. yüzyılda İngiltere kralı Edward III, Valois Hanedanı'ndan Fransa kralı Philippe VI'ya bağımlı bir hükümdardı; bu nedenle Fransa'daki toprağı Guyenne için onun otoritesine boyun eğmek zorundaydı. Ama Edward III bu bağımlılığa daha fazla dayanamadı: ana tarafından Güzel Philippe'in torunuydu ve bu sıfatla da Fransa tahtında hak iddia edebilirdi.
Philippe VI'nın Guyenne'deki müdahalelerini bahane ederek 1337 yılında Fransa kralı ile bağlarını kopardı ve Fransa tahtını ele geçirmeğe kalkıştı.
İngiliz Zaferleri
İngiliz ordusu Fransız ordusunu Crecy'de (1346), Calais'de (1347), Poitiers'de (1356) yendi ve Fransa'nın tüm güneybatı kesimini ele geçirdi. Charles V ile Bertrand du Guesclin karşı harekete geçerek kaybedilen toprakların bir kısmını geri aldılar. Fakat İngiltere'nin yeni kralı Henry V'in 1415'te kazandığı Azincourt Zaferi'nden sonra İngilizler egemenliklerini Fransa'nın kuzey yarısına kadar genişlettiler. Fransa kralı Charles VII, Loire'ın güneyine çekilmek zorunda kaldı.
»İngilizleri Fransa'dan Kovmak»
Tam bu sırada Jeanne d'Arc işe karıştı: kuşatılmış olan Orleans'ı kurtardı (1429) ve Charles VII'yi Reims'te takdis etti. Çok geçmeden yakalanarak İngilizlere teslim edilen Jeanne d'Arc, Rouen'de ateşe atılarak yakıldı (1431). Ama onun eylemi Fransızları yüreklendirmiş olduğundan Fransızlar üst üste zaferler kazanmağa başladılar: Paris geri alındı (1436); İngilizler Normandiya ve Guyenne'den kovuldular; ellerinde Calais'den başka yer kalmadı (1558'de orayı da kaybettiler).
Calais Burjuvaları
Calais kenti, on bir aylık bir kuşatmadan sonra 1347'de İngiltere kralına teslim oldu. Kral kentin ilerigelenlerinden en zengin ve en güçlü altı kişinin, başları açık ve ayakları çıplak olarak sadece bir gömlekle gelip kentin anahtarını getirmelerini şart koştu. Öldürülecek olan altı rehine İngiltere kraliçesinin ricası üzerine ölümden kurtuldular.
[Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ] [Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ]
(Solda) Azincourt Muharebesi'nde (25 ekim 1415), Fransız süvari ordusu, İngiliz okçu ve piyade birlikleri karşısında ağır bir yenilgiye uğradı. Bu muharebe, top güllelerinin ise karışmadığı, bilek gücüne dayanan son çarpışmalardan biri oldu.
(Sağda) Ecluse Muharebesi (24 haziran 1340), bıktırıcı Yüzyıl Savaşları'nın ilk kahramanlık hikâyelerine konu oldu: İngiltere kralı Edward III'ün donanmanı bu muharebede Philippe VI'nın donanmasını ezdi; Fransa bu çarpışmada 166 gemi kaybetti. Yüzyıl Savaşları'nın ilk yıllarında hayatta olan papaz Jean Froissart'ın kitabında yer alan minyatürlerden biri.
-
Fatih William I « Genel
William l, «Fatih» denir, Normandiya dükü ve İngiltere kralıdır (1027-1087). Muhteşem Robert'in evlilik dışı oğlu olan William, 1035 yılında babasının ölümü üzerine Normandiya dukalığının vârisi olarak tahta çıktı. On iki yıl süreyle krallığını ve otoritesini baronlarına kabul ettirmek için savaştı. Sonunda, Fransa kralı Henri I'in yardımıyla bu işi başardı.
O tarihten sonra ülkede birlik ve düzeni sağlayabildi, müstahkem şehirler (Caen) kurdu. İdareyi yeniledi, sert bir derebeylik rejimi yerleştirdi ve kiliseyi zengin ederek kendisine destek yaptı.
Kuzeni İngiltere kralı Günah Çıkarıcı Edward'ın ölümü üzerine William, krallığa, kimin vâris olacağı konusunda Anglosakson kontu Harold ile çatıştı. Hastings'te Harold'un ordularını yenen (1066) William, Noel günü Westminster Kilisesi'nde taç giydi. Daha sonra İskoçlara egemenliğini kabul ettirdi.
William I, İngiliz toplumuna derebeylik düzenini getirmiş, yasallarını sıkı bir denetim altında tutmuştur. Herkesin itaatim sağlamak üzere bütün kontluklara kendisini temsil eden bir şerif göndermiş, vasallarına verdiği bütün fieflerden Domesday Book adlı katalogda kayıtlı olan vergileri toplatmıştır. İngiltere'nin Normanlar tarafından fethedilmesi William'ın itibarını yükseltmiştir.
[Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ]
Bir duvar halısında («Kraliçe Mathilde Halısı» diye bilinen bir Bayeux halısı) Normandiya dükü William'ın tasviri. Eni 50 santim, boyu 70 metre olan ve 1066-1077 yıllarında İngiliz, ustalarınca dokunan, bîr «resimli roman» niteliğindeki bu halıda, İngiltere kıyılarına çıkan Normanların yiğitliği ve William'ın hasmı Harold'u yenilgiye uğrattığı Hastings Muharebesi anlatılır. Bayeux Müzesi (Fransa).
-
Zeus « Genel
Yunan mitolojisinde tanrıların kralıdır. Mitoloji efsanelerinin anlattığına göre, Kronos ile Rea'nın oğlu Zeus hayatta kalışını annesinin yaptığı küçük bir hileye borçludur. Kronos bütün çocuklarını doğar doğmaz hemen yiyordu; fakat Rea, Zeus'u doğurduğu zaman kocasına kundaklanmış bir taş parçasını verip çocuğu Girit'e, Zeus kültünün doğduğu ülkeye sakladı. Keçi Amaltheia'nın sütüyle beslenip büyüyen, güçlenen Zeus, babası Kronos'un saltanatına son verip Evren'in hâkimi oldu ve Olympos'u Titanlar ile devlere karşı savundu.
Şair Hesiodos'a (M.Ö. VIII. yy.) göre, Hera ile evlenmeden önce Zeus'un başından altı evlilik geçti. Tanrıların kralı zaman zaman ölümlülere de göz koymaktan geri kalmıyor ve hayvan kılığına girerek kadınları baştan çıkarıyordu: Leda için bir kuğu, Europe için bir boğa kılığına girmişti.
Zeus (Romalılarda adı Jüpiter'di), Atmosfer Olayları ve Yıldırım Tanrısı'ydı. «İnsanların ve tanrıların babası» ayrıca adaleti, siteleri, siyasal meclisleri ve pazar yerlerini de koruyordu. Zeus'a en çok tapıdan, saygı gösterilen yerler ise ıssız dağbaşları, özellikle Zeus tapınaklarından birinin kurulduğu Dodone'deki (Epir) kutsal meşe ormanı ve Olympos Dağı'nın tepesidir.
[Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ] [Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ]
(Solda) Zeus'un, tanrılara şakilik etsin diye, alıp Olympos'a götürdüğü, Truvalı prens Ganymedes'i kaçırışı efsanelerin ünlü bir konusudur.
(Sağda) Oğlu Herkül'ün (Herakles) yardım ettiği, zafer müjdecisi kanatlı Nike'nin yol gösterdiği Zeus, devlere karşı Olympos'u savunuyor. M.Ö. V. yy. yapımı testi. Louvre Müzesi, Paris.
-
George Washington « Genel
[Üyeler Mesaj Yazmandan Misafirlerde Kayıt Olmadan Link GöremezlerKayıt İçin Tıklayın ! ]
Amerikalı general ve siyaset adamı, Amerika Birleşik Devletleri'nin ilk cumhurbaşkanıdır (1732-1799).
XVIII. yüzyılın ikinci yarısında. Kuzey Amerika'nın henüz bir İngiliz sömürgesi olduğu dönemde George Washington, Virginia'daki zengin topraklarında rahat ve kaygısız bir hayat yaşıyordu. Buna rağmen, Fransa ile İngiltere arasında Yediyıl Savaşları patlak verince İngiliz ordusunun subayları arasına katıldı. Savaşın bitmesi üzerine Mount Vernon'daki topraklarının başına döndü; fakat İngilizlerin kötü yönetiminden o kadar yılmıştı ki, Philadelphia Kongresi'nde «Hürriyet Çocukları»nın safında yer alarak en aşın eğilimin temsilcisi oldu.
1775'te, İngiltere'ye karşı girişilen bağımsızlık savaşında Amerikan birliklerinin komutası George Washington'a verildi. Bir yıpratma savaşı uygulayan Washington, nihayet Yorktown'da İngilizleri teslim almayı başardı (1781). Barış antlaşması imzalanınca, siyasetten hoşlanmadığı için topraklarına döndü. Fakat kamuoyunun öylesine güvenini kazanmıştı ki 1789'da A.B.D.'nin ilk cumhurbaşkanlığına atandı, 1792'de de yeniden cumhurbaşkanı seçildi. Başkanlığı sırasında, malî bağımsızlık ve Avrupa ülkelerine karşı yansızlık politikası güderek, yeni kurulan devletin örgütlenmesine çalıştı.
Başkanlık Mandası
1792'de yeniden cumhurbaşkanlığına seçilen Washington, üçüncü kez başkanlık yapmayı kabul etmedi. Ondan sonra gelen bütün cumhurbaşkanları da aynı kurala uydular, yalnız ikinci Dünya Savaşı nedeniyle Roosevelt bu kuralın dışında kaldı. Washington'un başlattığı bu gelenek 1951'de bir yasa haline dönüştü ve cumhurbaşkanlığının süresi sekiz yıl olarak kısıtlandı.
Amerika Birleşik Devletleri'nin ilk başkanı olan George Washington, devrindeki iki siyasal eğilim arasında hakem rolü oynamıştır. Bugünkü başkanlar ise, her şeyden önce bir partinin adayı ve iktidardaki temsilcisidir.
-
Toprak Altındaki Kentler « Genel
İnsanlığın geçmişine ait bilgileri edinebilmek, eskiden insanların yaşadıkları varsayılan yerlerde kazılar yapmakla, eski kentleri ortaya çıkarmakla mümkün olur. Binlerce yıllık bir hayatın aşamalarını belirten ipuçları oralarda bulunabilir. Eski arkeologlar yalnızca eşya aramakla yetinirlerdi. Bugünküler o bölgenin tarihini de aydınlatmaya çalışıyorlar.
Toprak altında bulunan her yıkıntı orada eskiden bir şehir bulunduğunu göstermez. Bu yıkıntı bir kaleye, surlarına, mezarlığa, taş ocağına veya geçici bir konaklama yerine yani zamanla insanlar tarafından bilinçli olarak terkedilmiş bir yere ait olabilir.
Ayrıca insanlık tarihindeki bütün eski şehir ve yerleşim birimleri de toprağın altına gömülmüş değillerdir. Örneğin, Mexico City'de Azteklerin bir göl yatağına kurdukları şehir toprağa batmıştır ama Mayaların kayalar üzerine yaptıkları yapılar hala ayaktadırlar.
Toprağın altında kalma ifadesi de tam doğru değildir. Bugün güney Irak'ta bulunan Ur şehrinin kalıntıları üst üste birikerek toprağın ilk yüksekliğinden 20-25 metre daha yüksek bir tepe oluşturmuşlardır.
Bir şehrin toprağın altında kalması için önce orada yaşamın sona ermesi gerekir. Bir şehri insanların terk etmelerinin sebebi deprem ve sel gibi tabii afetler olabileceği gibi insanların kendileri yani savaşlar ve onların sonucu yapılan tahribatlar da olabilir.
Afetler ve savaşlar sırasında ev sahipleri kaçmak zorunda kalırlar, belki de ölürler veya öldürülürler. Ev boşalır, zamanla damı çöker, çerçeveler çürür, duvarlar yıkılır. Her yanı yabani otlar ve çalılar sarar. Aradan yüzyıllar geçer, toprağın yeni sahipleri burada ekime başlarlar, saban ne kadar tümsek ve çukur varsa hepsini dümdüz eder.
Aşınmaya, içi nemli toprakla dolu bir hendek daha az, taş duvarlar ya da sert zeminler daha çok direnç gösterirler. Toprağın derinliklerinde saklı kentlerden yer üstünde duvar kalıntıları, kırık bir sütun veya bir heykel görülebilir.
Toprağın altındaki eski şehirlerin oraya gömülüp kalmaları birkaç nedenin birleşmesiyle de oluşmuş olabilir. En çok rastlanılan durum, rüzgarın yarattığı toz bulutunun zamanla insan eliyle yapılmış ve terkedilmiş yapıların üzerinde birikmesi ve onları örtmesidir. Bu toz, toprağın gevşek yapısından oluşabildiği gibi volkanik bir püskürme sonucu oluşan toz da olabilir. Zaten havanın içinde de önemli miktarda toz vardır. Bu, yeni silinmiş camların yağmurdan sonraki hallerinden de anlaşılabilir.
Su baskını veya suların taşıdığı şeyler de eski kentlerin üzerlerini örtmüş olabilir. Bu oluşumlara taşan nehirlerin taşıdıkları alüvyonlar ve aşırı yağmurların yüksek yerlerden getirdikleri çamur tabakaları sebep olurlar.
Depremler bir şehrin yıkılmasına, yaşamın yok olmasına neden olabilirler ama onların toprak altında kalmalarının tek sebebi olamazlar. Milattan sonra 794 yılında Vezüv Yanardağı'nın püskürmesinin yarattığı deprem Pompei ve Herculaneum şehirlerini yok etmiştir ama toprağın derinliklerinde kalmalarının nedenleri birincisinde yanardağdan fışkıran çamur, ikincisinde ise kül tabakasıdır.
Şehirlerin toprak altında kalmaları olayının en belirgin örnekleri Anadolu ve Ortadoğu'daki kalıntılarda görülür. Birçok medeniyet bir önceki medeniyetin kalıntıları üzerine kurulmuştur. Evler çoğunlukla çamurdan yapılmış tuğlalarla inşa edilmişlerdir. Bu tuğlaların kullanım süreleri 60 yıl civarındadır. Sürekli bakıma, yağmurdan ve sudan korunmaya ihtiyaçları vardır. Aksi halde zamanla aşınır, dağılır, ufalanıp toprağa karışırlar. Alçıtaşından yapılmış kaldırımlar da kırılır, dökülürler ve onlar da toprak olurlar. Geriye sadece bu toprağın örttüğü, granit, mermer ve sert taşlardan yapılmış yapılar kalır.
-
İlk Paraşüt Denemesi « Genel
Aslında en çok merak edilen paraşütün icadından çok, onunla havadan ilk kimin atladığıdır. Kim böyle bir şeyi ilk defa denemeye cesaret etmiştir? Sanıldığının aksine paraşüt uçaktan sonra değil, yaklaşık bir yüzyıldan fazla bir zaman önce, balonla hemen hemen aynı tarihlerde ama çok ayrı çalışmalarla icat edilmiştir.
Paraşüt fikri eski Çin'e kadar gider. Günümüzdeki paraşüte benzer bir şeyler geliştirilmiş ama oyuncak olmaktan öteye geçememiştir. Leanorda da Vinci'nin de bu konudaki çalışmaları biliniyor. Bu fikri hayata ilk geçiren kişi ise Fransa'da 1783 yılında Louis-Sabestian Lenomand olmuştur.
Lenomand 4.5 metre yükseklikteki bir ağaçtan, omuzlarına birer adet bir çeşit şemsiye bağlayarak ilk deneyimini yapmıştır. Ancak o, buluşunu o seviyedeki bir yükseklikten, yangın çıkan bir binadan atlayarak kaçmak için düşünmüştü.
Ciddi anlamda ilk atlamanın şerefi ise Fransız Andre-Jackques Garnerin'e aittir. 1769 Paris doğumlu Garnerin Fransız ordusunda 1793 yılında müfettiş olmuş, İngiltere'de iki yıl hapis yatmış ve dönüşünde 1797 yılında ilk atlayışını 1.000 metreden bir balondan yapmıştır. Bu ilk paraşüt şemsiye şeklindeydi, çapı yedi metreydi ve ketenden yapılmıştı. Garnerin daha sonra birçok gösteri atlayışı yapmış, hatta bir keresinde 1802 yılında İngiltere'de 2.400 metreden atlamıştır.
Önceleri ketenden yapılan paraşütler, sonraları ipekten yapılmaya başlanıldı. Uçaktan ilk atlayışı gerçekleştiren ise 1912 yılında, ABD Kara Kuvvetleri'nden Yüzbaşı Albert Berry oldu.
Birinci Dünya Savaşı başlarında uçaktan paraşütle atlamanın pratik olmadığı görüşü hakim olduğundan, sadece gözetleme balonlarında görevli olanların, uçak saldırılarından kaçışlarında çok yaygın olarak kullanılmıştır.
Birinci Dünya Savaşı'nın sonlarına doğru paraşütün uçak pilotlarının da can dostu olduğu anlaşılmıştır. İkinci Dünya Savaşı'nda ise uçak ebatlarının büyümesi ve teknolojilerinin gelişmesi ile insanların ve birliklerin yere indirilmeleri dışında silahları indirmek, mahsur kalan birliklere ikmal malzemesi göndermek, ajanları indirmek gibi birçok alanda kullanılmışlardır.
-
Neolitik İngiltere « Genel
Şimdi İngiltere Adaları olarak bilinen yerde çok uzun süredir insanların varolduğu bilinmektedir; en azından 500.000 yıldır. Ancak İngiltere 8-10.000 yıl önce buzlardan arınana kadar herhangi bir uygarlık gelişimi olmamıştır. O zamandan sonra arkada bırakılan anıtlarda bir süreklilik gözlenmektedir. Bunlar, ilk Neolitik insanlann evlerini orman açıklıklarında kuran avcılar olduğunu göstermektedir. Zaman içinde tarım gelişmiş, yaklaşık M.Ö. 3600 yıllarında Marlborough Downs'ın tepe bölgeleri temizlenerek işlenmiştir.
Avrupa'da İber yarımadasında bulunan megalitik yapıların en eskisi yaklaşık olarak M.Ö. 4700 tarihine dayanmaktadır. Tapınak benzeri yapılar Malta ve Gozo'da da görülmektedir. İngiltere'deki ilk antik mezarların tarihi M.Ö. 3700 yıllarına uzanır. Bunlar İngiltere'nin güney kısmında oldukça sık görülen uzun höyüğe kadar devam eder.
Uzun höyükler, uzunluğu 100 metreye, genişliği 20 metreye ve yüksekliği 2-3 metreye kadar çıkan ince uzun höyüklerdir. Bir ucunda genellikle höyüğün genişliğinin yedide birinden fazla olmayan bir gömü dairesi bulunur. Yapının geri kalanı gömüyle ilgili olarak herhangi bir amaca hizmet etmez ve bilindiği kadarıyla sembolik ya da dini bir önem dışında herhangi bir fonksiyona sahip değildir.
Tarım avcılığın yerini almasına karşın ömürler hâlâ kısaydı ve genellikle acımasızdı. Aubrey Burl, Prehistoric Avebury (Tarih Öncesi Avebury) adlı kitabında şöyle demektedir:
Bu eski çiftçilerin gömülerine bakıldığında, sağlıkları hakkında net bir resim ortaya çıkmaktadır. İnsanlar arasında silah yaralan ender görülen bir durum değildi. Kadınlar arasında ölümcül hastalıklar biliniyordu. Çoğu yetişkin mafsal iltihabı çekiyordu... Dengesiz ve yetersiz beslenme, çocuklarda sık sık raşitizm ve hatta ölüme neden oluyordu. Bazı insanlar çocuk felcine, sinüzite, tetanoza, tüberküloza yakalanıyorlardı; ve bu ürkütücü listeye kesinlikle veba ve sıtma da ekleniyordu.
Ölüm çabuk geliyordu. Birçok erkek otuzaltısında, birçok kadın otuzunda ölüyordu ve yetmiş yaşına kadar yaşayanlar oluyorsa bile, bunların sayısı üç yaşından önce ölen çocukların yarısı kadar olmalıydı.
Avebury yakınlarındaki Windmill Tepesi'nde, o zamanlardan kalma bilinen en büyük yerleşim yerlerinden biri bulunmaktadır. 8 hektardan geniş bir alana yayılmaktadır ve çevresinde tahkimatları vardır. Bilindiği kadarıyla bir ticaret merkezi olmasının dışında çıkarılan heykelciklere bakılırsa ayinler ve büyü için kullanılan dini bir yerdir. Bölge, yaklaşık 5500 yıl öncesinin Neolitik İngiltere'sinde birçok şey için merkez olmuştur.
M.Ö. 3200-3100 tarihleri arasında kısa bir zaman içinde İngiltere Adaları'nda çok önemli bir değişim olmuştur. İnsanlar 'uzun höyükler' yapmayı bırakmış, bunun yerine taş daireleri inşa etmişlerdir. Dikdörtgen yapılar, geniş dairesel yapılara yerlerini bırakmışlardır. Stonehenge'in ilk aşamasının ortaya çıkışı da aynı döneme rastlar.
İrlanda'da, bu daha yeni megalitik anıtların en etkileyicilerinden biri Newgrange, Co.Meath'de bulunmuştur. Bu muhteşem yapının dış yüzeyi beyaz quartz taşıyla kaplandığı için günışığında pırıl pırıl parlamaktadır. İçteki dairesi, kışdönümünde doğan güneşle aynı hizadadır. Gündönümünde güneş ufukta yükselirken, ilk ışıklarla aydınlanmaktadır. Bu olaya şahit olanlar, yaşadıkları şeyin gücüne hayran olmaktadırlar. Güneşin doğuşunun ilk saniyelerinden itibaren, görüntü arkadaki taş duvarı ışıkla yıkayan altın renkli bir nehrin içeri akışını andırmaktadır.
M.Ö. 3200 yıllarında inşa edilen Newgrange, diğer bir yeni gelişimi göstermektedir: Taş sanatı. Taşların üzerine daireler, helezonlar ve halkalar kazınmıştır. Ne anlama geldiklerini henüz kimse bulamamıştır. Ancak, İrlanda, İskoçya, Cumbria ve Yorkshire'da bol miktarda bulunan bu işaretleri Profesör Thom incelemiştir. Bunların yine Megalitik Metre'nin 1/40'ına denk gelen bir ölçüye dayanarak yapıldığını savunmaktadır. Neredeyse kesin bir biçimde güneşin, ayın ve yıldızların hareketini gösteren bu işaretlerin dini bir amaçla yapıldığını söylemiştir. Bu işaretler, bilgileri kuşaktan kuşağa aktarmak için piktogram şeklinde bir "yazı"nın kullanıldığına dair tek kanıttır.
Newgrange'in tamamlanmasından kısa bir süre sonra, Stonehenge, Silbury Hill ve Avebury'nin inşaatı başlamıştır. Sadece birkaç yıl içinde yüksek sayıda taş daireler, taş anıtlar ve gömülü höyükler İngiltere Adaları'nın her yanına yayılmıştır.
Bu ani mimari devrimin nedeni bilinmemektedir. Ancak en gerçekçi açıklama, yeni bir kültürden insanların oraya vardıklarıdır. Ancak anıtların tarihleri ve açıklamaları, şaşırtıcı bir şekilde İngiltere'nin güneydoğusundaki kısa kanaldan değil, batıdaki denizin ötesinden gelindiğini göstermektedir.
-
666 Sayısı « Genel
Book of Revelation şöyle der:
�İşte bilgelik. Bırak anlayanlar canavarın sayısını hesaplasınlar: İnsan için sayısı; onun sayısı altıyüz, üç yirmi ve altıdır. (13:18)�
Birçok kimse "canavar"ı Hıristiyan karşıtı kişi olarak düşünür ve 666'nın da Şeytan'ın sayısı olduğunu kabul eder. Ama Book of Revelation daha birçok gizemli sayıyla doludur. Örneğin; New Jerusalem'in ölçülerinden şöyle bahseder:
�Ve o benimle konuşanın elinde şehri ölçmek için altın bir asa vardı ve oradaki kapıları, buradaki duvarları. Şehir dörtköşedir ve eni boyu kadardır; ve şehri asasıyla ölçtüğünde onikibin furlong olduğunu buldu. Eni ve boyu ve yüksekliği eşitti. (21:15-16)�
Onikibin furlong boyutlarında bir şehrin inanılmaz derecede devasa bir yer olması gerekir, çünkü bu durumda göğe yükselen kısmı yaklaşık 2,400 km. olacaktır; bu da oldukça bilim-kurgusal bir yaklaşım olur. St. John, gezegenimizin olası teknolojik geleceğine bir bakış atmış olabilir ama bu sözlerin gerçek anlamdan çok mecazi olması daha muhtemeldir. İncil'de sık sık karşılaşılan sayı sembolizmi, Musevi inancında çok önemlidir. Gerçekten, benim de keşfettiğim gibi, 666 sayısından sadece Book of Revelation'da değil, Book of Kings (Kralların Kitabı)'de de bahsedilmektedir:
�Solomon'a (Kral Süleyman) her yıl gelen altın, altıyüz, üç yirmi ve altı talentdi.�
Solomon adı İbranice barış anlamına gelen shaloın kelimesinden türemiştir ama Kral James versiyonunda simya terimleriyle sol (Güneş) ve omon (Ay) olarak karşılık bulmaktadır.
Orta Çağ'da ortaya çıktığı haliyle simyanın kökleri, antik Mısır'ın izoterik bilgilerinden kaynaklanmakta olan keşiş bilimidir. Mısırlılar için bu bilimin adı Kemet idi ve günümüzde bundan kimya (chemistry) ve simya (alchemy) sözcükleri türemiştir. Kabala'da görülen izoterik Musevi geleneğinde de bazı simya kavramlarının Mısır inançlarından kaynaklandığı belirtilmektedir.
Musevilik, Hıristiyanlık ve İslam dinlerinde, güçlü inanç taşıyan ve kendini adamış olan kişiler tarafından sır olarak tutulan bazı kavramlar olduğu bilinmektedir. Bu gizli sistemler, felsefik kavramları ifade etmek için genellikle sayılar kullanılır. Yine bu da antik Mısır'dan kaynaklanan bir fikirdir.
A.T. Mann, bu sistemin nasıl işlediğini Sacred Architectııre (Kutsal Mimari) adlı kitabında şöyle açıklamaktadır:
�Sembolik matematik antik gizem okullarının temeliydi ve insanların inançlarını, yaşamlarını düzenleyen prensipleri belirlerdi. Her tanrının doğası ve sembolik gezegeni sayıyla temsil edilirken, geometri biliminde her harfin sayısal bir karşılığı vardı. Sistem ibrani ve Yunan alfabelerinde benimsenmişti...�
�Geometri kullanırken, tapınakların ve anıtların boyutlar, şiirlerin ölçüleri, müzikal yazımlar ve diğer konular tanrılarla ve güçleriyle ilgili olmalıydı. Herhangi bir kelimenin veya adın şifresini çözerek daha derin, sembolik niteliklerini anlamak mümkündür. Eflatuncular, Hermesçiler, Resicrucian'lar, Hıristiyan Gnostikleri, simyacılar, masonlar, tapınak şövalyeleri ve diğer birçokları bu gizli kutsal dili kullanmışlardır.�
Simyada, Ay ve Güneş sürekli bir uyum içinde olan dişi ve erkek elementler olarak ele alınır. Thomas Vaughan, 1650'lerde yazdığı yazılarda şöyle anlatmaktadır:
�Güneş ve Ay, biri aktif, diğeri pasif, bu Erkek, o Dişi olan iki Büyüsel Prensip'dir. Onlar hareket ettikçe. Yozlaşma ve Kuşak da hareket eder: Eşit olarak çözülür ve birleşirler.�
Simyada altın, saflaşmış ruhu simgeler ve geleneksel olarak Güneş'le bağlantılıdır. Güneş'in bir dönümü ise bir yıl demektir. Bu yüzden İncil'de 666 sayısıyla Güneş arasında bir bağlantı bulunduğuna dair Kings kitabından bir alıntı vardır.
Ayrıca, 666 sayısından Ezra'da da bahsedilmektedir ve Babil'den Judah'a dönen insanları simgelemektedir:
Adonikam'ın çocukları altıyüz, altmış ve altı tanedir. (2:3)
Adonikam kelimesinin anlamı şudur: "Tanrı'nın övgüsüne layık."
666 sayısının İncil'deki anlamlarının yüzeysel olarak kastedilenlerden başka bir anlamı olmaması da mümkündür. Ancak St. John, 666 sayısını sayı sembolizmini alegorik olarak kullanan Musevi mistisizmine bağlamaktadır. Muhtemelen aynı geleneği izleyen kişilere yönelik bazı mesajlar vermeye çalışıyordu ama günümüzde artık bu mesajlar belirsizdir.
Yine bir tesadüf olarak, eski Roma rakamları da büyükten küçüğe dizildiklerinde toplamı 666 sayısını vermektedir:
D = 500
C= 100
L= 50
X= 10
V= 5
1= 1
666
Bu yüzden canavarın sayısı olarak kabul edilen 666'nın Hz.İsa'nın çarmıha gerilmesini sağlayan Roma otoritelerini temsil ediyor olma olasılığı da yüksektir.
Hıristiyanlık dininin İngiltere Adaları'nda yayılmaya başladığı yıllarda 666 sayısı M.S. 946 yılında St. Dunstan tarafından yaptırılan ünlü Glastonbury Manastırı'nda da yer almaktadır. Bu, ilk olarak Bligh Bond'un 1920'deki araştırmasında ortaya çıkmıştır.
Manastırın bir kenarı 74 fit olan dokuza dört karelerden oluşan bir dikdörtgen alan üzerine kurulu olduğunu görmüştür. 74 fit, 888 inch demektir. Yer planı ise 666 fit x 296 fit boyutlarındadır. Manastırın mimarlarının bu sayıyı tasarımlarında yer verecek kadar önemli gördükleri ve St. John'ın "canavar" atıfını dikkate almadıkları bellidir.
-
İsis ve Osiris Miti « Genel
Zamanın başlangıcından önce, mutlak yaratıcı tanrı Ra-Atum, kaos suları Nun'dan doğmuştu. Bundan sonra tanrı Shu (rüzgar) ve tanrıça Tefnut (su) yaratılarak iki çocukları olan erkek toprak Geb ve dişi hava Nut'u doğurdular. Onların birleşiminden Osiris, İsis, Seth ve Nepthys adlı dört tanrı ile birlikte Dünya'daki bütün canlılar ortaya çıktı. Tanrıların en büyüğü olan Osiris kral oldu. Eşi ve kızkardeşi İsis ile birlikte Mısır'ı yöneten bilge ve cömert bir kraldı. İnsanlarına uygarlığı ve tarımı getirerek herkesin refah içinde yaşamasını sağladı.
Osiris, bu bilgilerin tüm insanlığa aktarılması gerektiğine karar vererek harekete geçti. Onun yokluğunda kardeşi Seth yönetime geçti. Seth güçten hoşlandı ve ağabeyi geri döndüğünde krallıktan vazgeçmemeye karar verdi.
Seth, Osiris'in Mısır'a döndüğünü duyduğunda, ağabeyini öldürmeye çalıştı. Tam Osiris'e uygun bir lahiti vardı. Osiris'in onuruna verilen muhteşem bir ziyafette, Seth lahiti ortaya çıkardı ve ona tam olarak uyan kişiye vereceğini söyledi. Saray mensupları tek tek denediler ama hiçbirine uymadı. Ardından tabuta girme sırası Osiris'e geldi. Seth hemen kapağı kapadı ve lahiti Nil'e attı. İsis çok üzüldü ve kocasının cesedini aramaya başladı. Buldu ama onu hayata geri döndüremeden Seth çifti yakaladı. Osiris'in bedenini ondört parçaya bölerek Mısır'a savurdu.
İsis, büyü güçlerini kullanarak kocasının parçalarını aradı. Bir Nil yengeci tarafından yenmiş penisi dışında hepsini buldu. Hepsini birleştirerek kocasının cesedine tekrar yaşam üfledi. Ardından yeni bir penis yaparak kendisini hamile bıraktı ve kısa süre sonra Horus adındaki oğullarını doğurdu. Dünya'yı yönetmekten sıkılmış olan Osiris, Seth'e karşı savaşmak üzere şahin başlı oğlu Horus'u bırakarak ruhsal aleme geri döndü.
Antik Mısırlılar, ölen kişinin dünyadayken yaptıkları için yargılanmak üzere Osiris'in karşısına çıktığına inanırlardı. Bu sınavı aşarlarsa, cennette kalmalarına izin verilirdi ama aşamazlarsa timsaha dönüştürülürlerdi. Bu yargılama sahnesi mezarlarda sık sık resimlenmiştir ve "kalbin tartılması" töreni olarak bilinir.
Osiris miti, birçok şekilde yorumlanabilir. Bazı araştırmacılar Osiris ve İsis'in gerçek insanlar olabileceğini söylemişlerdir. Sembolik bir yönden bakıldığında doğamızın Seth ile simgelenen maddiyatçı yönüyle Osiris ile simgelenen ruhsal yanı arasındaki fark gösterilebilir.
Mısır hanedanlığında firavun Horus'un insan bedeninde enkarne olmuş hali olarak görülür, düzensizlik ve kaosun güçleriyle savaştığına inanılırdı. Bilinen en eski tabletlerden birinde -1. Hanedanlık döneminde Yukarı ve Aşağı Mısır'ın birleştiği dönemlerden kalan Narmer tableti- Horus kralın üzerinde uçarken resmedilmiştir.
-
Matematik ve Firavunlar « Genel
Mısır bilimciler, bulunmuş olan birkaç matematik papirüsü sayesinde antik Mısırlılar'ın hesaplama ve ölçümleme sistemleri hakkında bazı şeyler bilmektedirler. Bunlar, o zaman ortaya çıkan bazı sorunların nasıl çözüldüklerini göstermektedir.
En ünlülerinden biri, bugün British Museum'da sergilenen Rhind Matematik Papirüsü'dür. Bu sorunlara gelirsek, Mısır bilimcileri antik Mısırlılar'ın ağırlık, ölçü ve hacim hesaplamalarından ortaya çıkan farklı miktarlarla nasıl baş ettiklerini keşfetmişlerdir. Bunlar aynı zamanda açıları nasıl ayarladıklarını da göstermektedir.
Bugünün modern dünyasında bir açıyı ölçmek için bir daireyi 360 dereceye tamamlayan iletkiler kullanmaktayız. Her derece 60 dakikaya ve her dakika da 60 saniyeye bölünmüştür. Antik Mısırlılar ise, açıları hesaplamak için oldukça farklı bir yöntem kullanıyorlardı. Bu, dik açılı bir üçgenin uzun kenar oranı üzerine dayanıyordu. Sonuç olarak her türlü açıyı eğim olarak hesaplayabiliyorlardı. Benzer bir sistem, otoyollarda tepe eğimini gösteren eski tip tabelalarda görülebilir. Bunlar bir tepenin eğimini l :6 gibi sayısal oranlarla gösterirlerdi. Bunun anlamı, ufuk çizgisinden dikeye doğru açının altı eşit parçaya bölünmüş olduğudur.
Aynı şekilde antik Mısır'da da bir eğimin açısı seked olarak bilinen tam bir oran sayısıyla ifade edilirdi.
Anlaşıldığı gibi, bu teknikler Marlborough Downs'daki antik İngilizler'de de gözlem yapmak için hayati önem taşımaktadır.
Antik Mısırlılar'ın kullandığı yöntemi anladığımızda, Büyük Piramit'detci 51 derece-51 dakika gibi "garip" eğim açılarının oluştuğu da ortaya çıkmaktadır. Bu, piramidin yüksekliği ve tabanı arasındaki sayısal orandan kaynaklanmaktadır. Bu da Büyük Piramit'de 7:11'dir. Bu, piramitler hakkında okuduğum hiçbir kitapta bulamadığım basit bir gerçektir ve bütün piramitler için geçerlidir. Piramitlerin sayısal anahtarı, tabanlarının yüksekliklerine olan orantısında yatmaktadır.
Pratik açıdan -ki, antik Mısırlılar kesinlikle pratik insanlardı- bu yöntem, piramit yapılırken doğru eğim açısının korunup korunmadığını sürekli olarak kontrol etmek için en kolay yoldu.
Ama burada cevaplanması gereken soru, Giza Platosu'ndaki piramitlerde antik Mısırlılar'ın neden farklı eğim açıları kullandıklarıdır. Farklı oranlar neden önemliydi? Formül oluşturulduktan sonra diğer hepsinin Büyük Piramit'le aynı oranla yapılması daha pratik ve kolay olmaz mıydı?
Mısır bilimciler, bizi firavunların her birinin kendi bireyselliklerini ifade etmek için bu yönteme başvurduklarına inandırabilir. Ama başka bir neden daha olabilir. Belki de kullandıkları oranlarda farklı sembolik bağlantılara yönelmek istiyorlardı.
7:11 oranına dayanan en azından bir piramit daha vardır. Giza'nın 160 kilometre güneyinde kalan Meidum'da bulunan bu piramit, Keops'un babası Senefru'ya adanmıştır. 5. Hanedanlık'dan Sahure'ye adanmış olan ve Abusir'de bulunan başka bir piramidin de eğim açısı 51 derece 42 dakika olarak hesaplanmıştır. Bu, Büyük Piramit'in açısının kesiridir ve aynı şekilde 7:11 oranını kullanmaktadır. Diğer birçok Mısır'da olduğu gibi Sahure Piramidi'nin de sorunu, dış yüzeyi çok fazla zarar gördüğü için doğru açının tam olarak hesaplanamamasıdır.
Kefren Piramidi'nin eğim açısı, M.Ö. 2278'den 2184'e kadar hüküm sürmüş olan 6. Hanedanlık'dan II. Pepi'ninkiyle aynıdır. Bu piramit şu anda kalıntı halindedir ama kalıntılardan eğim açısını hesaplamak mümkün olmuştur. Daha sonraki Mısır piramitlerinin yapısı, Giza Platosu'ndakilere göre daha basittir ve zaman içinde çok fazla zarar görmüşlerdir. Birçoğu şu anda moloz halindedir. Ama Kefren'deki eğim açısı (3:4:5 üçgenini temel almaktadır), Rhind Matematik Papirüsü'nde açığa kavuşmuştur. Buna göre, antik Mısırlılar'da bu oran iyi biliniyordu.
Antik Mısırlılar'ın 3:4:5 üçgenini bilmediklerini savunan Mısır bilimcilerinin hatırına hipotenüs uzunluğu (5) hiç verilmemiştir. Ama piramitleri de içine alan matematiksel sorunlar, yüksekliğin taban uzunluğuyla orantısı olarak açının "seked"i şeklinde açıklanmıştır. 3:4:5 üçgeninde seked, 3:4 orantısıdır. Ama hipotenüsün uzunluğu hiç verilmezken, bunun nedeni Mısırlılar'ın bu uzunlukla hiç ilgilenmemiş olmalarıdır.
Büyük Piramit veya Kefren Piramidi gibi kesin ölçüm becerileri gerektiren muhteşem anıtları tasarlayabilen ve inşa edebilen insanların kullandıkları üçgenlerin hipotenüs uzunluklarıyla ilgilenmediklerine inanabilir miyiz? Ölçümlerinde tutarlılık arayan her insan, sayı, biçim ve geometri arayışlarında her türlü uzunluk ölçülerini elbette ki hesaplayacaklardır. Bu, çalışma yöntemlerinin temelidir. O halde, üçüncü kenarın uzunluğunu gizliden gizliye bildiklerine dayanarak sadece 3:4 oranını kullanmaya devam edeceğiz.
Giza piramitlerinde kullanılan taban-yükseklik orantısı, antik Mısırlılar tarafından kesinlikle biliniyordu. Birçok matematik metninde verilen örneklerde bu açıktır. Tabii ki piramitlerde kullanılan oranların keyfi olarak seçilmiş olması da mümkündür. Ancak bu özellikler, Mısırlılar'ın sanatsal ifade biçimlerinin hepsinde ortaya çıkmakta ve sayı sembolizmine verdikleri önemi vurgulamaktadır.
Bu oranların belli dini kavramları ifade eden anlamlar taşımaları yüksek olasılıktır. Diğer bir deyişle, Giza'daki yapıların tamamı kasıtlı bir şekilde ruhsal bir konuyu ifade etmek için yapılmıştı. Bu, piramit tasarımcılarının üç piramidin her birinde neden farklı eğim açılarını seçtiklerini açıklamaktadır.
The Orion Mystery'de Bauval ve Gilbert, Giza piramitlerini Orion takımyıldızına ve özellikle Orion kuşağındaki yıldızlara bağlayan kanıtlar göstermişlerdir. Bu takımyıldız aynı zamanda İsis ve Osiris mitinde de karşımıza çıkmaktadır ve daha önce de söylediğimiz gibi, bu piramitler üç temel ilah grubunu temsil etmek için yapıldı
-
Kutsal Geometri « Genel
"Kutsal Geometri" kavramı, sanatta ve mimaride olduğu kadar doğada da bulunduğu düşüncesiyle bizi yanıltabilir. Neden bazı öğeler kutsalken diğerleri değildir? Bu sorunun kolay bir cevabı yoktur. Ne var ki, belli geometrik ilişkilerin ve orantıların genellikle dini amaçlı yapılarda kullanıldığı şeklinde bir anlayış ortaya çıkmıştır. Genel gözlemciler için bu orantılar sadece güzeldir.
Sanatsal açıdan, bu müzikle özdeştir. Farklı nota grupları kullanılarak uyumlu ya da uyumsuz melodiler yaratılabilir. Gregoryan ilahileri gibi bazı müzikler bizi ruhsal dünyaya yaklaştırabilir. Diğer müzikler ise bizi doğruca duygularımıza seslenebilir. Gerçekten de, büyük düşünürlerden biri olan Pisagor, müzik, ses, sayı ve biçim arasındaki bağlantıyı göstermiştir.
Dini gelenekte üç temel geometrik şekil temeldir; daire, üçgen ve kare. Bunlar, varoluşumuzun üç seviyesini simgelemektedir; ruh, zihin ve beden. Sayı sistemleri gibi, pergeli de ilk kez kimin kullandığı bilinmez. Muhtemelen bir ip ve iki sopaydı ama bu gelişim fikirler ve biçimler dünyasına sembolik bir araştırmayı başlattı. Bir pergel kullanılarak bütün geometrik şekiller çizilebilir. Bazen "Büyük Geometrici" diye anılan Tanrı, sık sık pergel kullanırken betimlenmiştir.
Geometri, sayı çalışmalarıyla da yakından ilgilidir. Tam sayılar ideal kabul edilir. Doğalarında bir tamlık, bütünlük vardır; oysa kesirli sayılar o sayıların henüz gelişim aşamasında olduklarını göstermektedir. Bu açıdan bakıldığında, bazen yaratım sürecindeki ilah gibi algılanır. Tam sayılar bilinebilir ama pi gibi oranlar sadece tahmin edilebilir ve bu yüzden de bilinmezdir. Bu, her şeye nüfuz eden Tanrı'nın kavranamaz elidir.
Ama sayılar gerek rasyonel (tam sayılar) gerekse irrasyonel (kesirli sayılar) olabilirken, geometri bu ayrımı birleştirir. Bir daire yarıçapında rasyonel tam sayı prensibine uyarken, çevresinde uymayabilir ve irrasyonel kesirli sayı verebilir. Bir kare ve köşegeni de benzer bir durum gösterebilir. Örneğin; kenarları bir birim olan karenin köşegen uzunluğu 2'nin karekökü olabilir. Kök kelimesi (karekök gibi) antik bir kavramdır ve doğadan gelmektedir. Bir bitkinin kökü toprak altında gizlidir ama toprağın üzerinde yetişen şeyi ortaya çıkarır ve hisseder.
Aynı şekilde, sayıların karekökleri gizlidir ama içlerinde gizlidir. Örneğin; 16'nın karekökü 4'dür (4x4= 16). Ama 15'in karekökü irrasyonel bir sayıdır ve kolayca hesaplanamaz. Sayıların kareköklerini bulmak, antik matematikçiler için önemli bir konuydu. Ama bir sayının karekökü sayısal olarak hesaplanamıyorsa, geometrik olarak ortaya çıkarılabilirdi. Böylece geometrinin gücü antik zihinlerde yerleşmeye başladı.
Geometri, insan bilincinin üst düzeylerine bir giriş kapısıydı ve kutsal sanat ve mimaride önemli hale gelmesinin de nedeni budur. Kutsal sanat ve mimaride orantıların kökenine indiğimizde, dini binalarda ve kutsal biçimlerde bulunan gizli geometriyi tanımlayacak en iyi yol olarak kutsal geometri kavramıyla karşılaşırız.
DAİRE, ÜÇGEN VE KARE
Yaratılması en kolay geometrik şekil dairedir. Bütün ihtiyacınız olan bir pergel veya sicim, sırık ve işaretleyicidir. İçice geçmiş iki daire çizmek için pergeli ilk dairenin çevre çizgisi üzerine yerleştirip aynı boyda bir daire daha çizmeniz yeterlidir. Bu vesica tasarımından, en önemli üç "kök" (22, 32, 52) çıkarılabilir.
Dairelerin çevrelerini l olarak alırsak, elimize köşegeni karekök işareti 2 olan bir kare ve köşegeni karekök işareti 5 olan bir dikdörtgen geçer. Çevre çizgilerinin kesiştiği en üst noktadan en alt noktaya kadar olan uzaklık bize bir üçgenin yüksekliğini karekök işareti 3 olarak verir. Dikdörtgen, "altın anlam" orantısını bulmak için de kullanılabilir. Daha sonra da göreceğimiz gibi, vesica ve 2'ye l dikdörtgen, antik ölçülerin temelidir.
Üçgen, daire ve kare arasındaki geçiş formu olarak görülmektedir. Zamanla tanrılar ve tanrıçalar arasında bir üçleme, baba, anne ve oğul sembolü haline gelmiştir; Mısır'da olduğu gibi. Bu kavram, birçok dini inanç sisteminde temel olmuş ve Hıristiyanlık'da Baba, Oğul ve Kutsal Ruh olarak ortaya çıkmıştır. Üçgenin en mükemmel şekli kenar uzunluklarının ve açıların eşit olduğu eşkenar üçgen kabul edilmektedir.
Yaygın biçimde kullanılan diğer bir üçgen de, kendisinden çok daha uzun zaman önce ortaya çıkmasına karşın Pisagor'a ithaf edilmiştir. Kenar uzunlukları tam sayı oranıyla gösterilmektedir; 3:4:5. Bu üçgen, dik üçgenin kenar uzunlukları tam sayı olarak ifade edilebilecek en basit şeklini sunmaktadır. Basit sayısal oranlar alındığından, sanat ve heykelde olduğu kadar gözlemcilikte de çok kullanılmıştır. Kefren Piramidi, buna dayanmaktadır.
Daire, üçgen, kare ve dikdörtgen, kutsal mimarinin temeli olmuştur. Geleneksel olarak, belli oranlarla birbirlerine bağlıdırlar. Bu oranlar kozmosun özgün uyumunu göstermeye çalışmaktadır. Böyle bir oranın adı Aristo tarafından "gnomon" olarak belirlenmiştir: "Orijinal şekile eklendiğinde ortaya çıkan şekili orijinaline benzeten şekil." Diğer bir deyişle, her ek adımda orijinal oran korunmaktadır. Bunun bir örneği "altın anlam" oranının sayısal olarak ifadesi olabilir; l, l, 2, 3, 5, 8, 13, 21... gibi. Bu sistemde son sayı, kendisinden önceki iki sayının toplamı olmaktadır. Fibonacci serisi de buna güzel bir örnektir ama başkaları da vardır.
Robert Lawlor, Sacred Geometry (Kutsal Geometri) adlı kitabında, 1:2 oranından çıkan Fibonacci serisine dayanan "gnomon" spiraller örneğini vermektedir. Bu genişleyen şekillere bazen "dönen kareler" de denir; bu, doğal dünyada sık raslanan spirallere benzemektedir.
Farklı oranlardaki gnomonları incelerken, önemli bir şeyi keşfettim. 1:3 oranlı gnomonlardan biri, tam olarak Giza piramitlerine bağlıydı. Bu orandan aynı zamanda Keops'un, Kefren'in ve Menkar'ın da temel oranları çıkabiliyordu. Gelişim, bir çizgi üzerinde üç bitişik karenin çizilmesiyle başlıyordu ve bunlarla 1x3 oranında bir dikdörtgen yaratılıyordu. Sonra gelişimin her aşamasında uzun kenar üzerine dizilmiş her kare çiziliyordu.
İlk kare, 3:4 oranında bir dikdörtgen yaratıyordu. Bunu ikiye katlamak Kefren'in oranını veriyordu; 6:4. 3:4 dikdörtgene iki kare daha ekleyince, Keops Piramidi'nin 7:11 oranı ortaya çıkıyordu. Bir kare daha eklenince Menkar Piramidi'nin 11:18 oranı oluşuyordu. 3'e l'lik bir dikdörtgenle başlayan bu yöntem, piramitlerin taban ve yükseklik oranlarının belli bir matematiksel sistemle yürüdüğünü açığa çıkarmaktadır. Tesadüfi ya da bilinçli olsun, uyumlu bir geometrik seri izlemektedirler.
3:1 oranında bu kadar önemli olan nedir? Belki bu da Mısırlılar'ın Osiris, İsis ve Horus üçlemesini yansıtıyor olabilir. Bundan asla emin olamayız ama bu kalıp, Mısır modeli hakkında değerli bir görüş sunmaktadır.
Bu keşif, aynı zamanda Mısırlılar'ın kare ızgara kalıplarından yola çıkarak tasarımlarını yaptığını gösteren mimari yöntemlerine uymaktadır. Mısır sanatında, ressamların ve heykeltraşların eserlerinde orantıları korumak için öncelikle ızgaralar oluşturduklarını gösteren birçok örnek vardır. Bu ızgaraların basit sayısal oranları, Mısırlılar'ın bütün büyük sanatsal başarılarının temelinde yatmaktadır.
Bu yöntem ayrıca Leonardo da Vinci gibi birçok Rönesans sanatçısı tarafından da kullanılmıştır. Antik Mısır'da, bu yöntem Büyük Piramit'de karşımıza çıkmakta ve piramitleri bir yönden daha Marlborough Downs'daki şekillere bağlamaktadır.
-
İskenderiye « Genel
Atina'nın gerilemesi, İskenderiye'nin parlamasına yol açtı. Sürekli savaşlarla zenginliğini yitiren ve güçsüzleşen Perikles'in başkenti, uluslararası ticaretin kendisine yüz çevirdiğine ve İskenderiye�nin olağanüstü bir gelişme gösterdiğine tanık oldu. Dâhi şehirci Dinokrates'in M.Ö. 300'e doğru inşa ettirdiği bu yepyeni şehir, havuzlara, rıhtımlara, doklara, atölyelere sahip olduktan. Mimar Sostrates'in eseri (M.Ö, III. yüzyıl) dev fenerle aydınlandıktan ve Ptoleme gibi becerikli bir 'hanedan' eliyle yönetildikten sonra 'tanrıların lütfuna' nasıl erişmezdi? Hükümdarlarının cömertliği sayesinde (Müze denilen) büyük bir üniversiteye ve zengin bir kütüphaneye sahip olduğu ve tekniği geniş mali imkânlarla desteklediği için, dünyanın en büyük bilginleri bu şehre akın etmeye başladılar.
Bu bilginler, Tales'ten bu yana ülkelerinde egemen olan bilimsel düşünüşü benimsemiş Yunanlılardı. Yani tam anlamıyla spekülatif ruhlu kimselerdi. Uygarlığa getirdikleri paha biçilmez katkılar bilinmektedir: Geometride Öklid ve Apollonius; astronomide Hipparkos; yer ölçümünde Erotostenes; statik ve hidrostatik'te Arşimet... Bununla birlikte İskenderiye'nin Mısır'da bulunması şöyle bir olaya yol açacaktır. Eski Mısır kültürü Yunan bilimini etkileyecek ve sonunda yepyeni bir bilim ortaya çıkacaktı. Yunan bilimi teoriler ve rasyonel kurallar demekti; Mısır bilimiyse ampirikti; yani binlerce yıllık deneylerin öğrettiklerine ve teknik hünerlere dayanıyordu.
İskenderiye'deki bu karşılıklı etkilenme alanına, Yunanlılar, geometri, astronomi ve kartografi bilimlerini sunarlarken; Mısırlılar da binlerce yıllık mimarlık ve Nil taşmalarını düzenleme deneylerini, doğru ölçme ilkelerini, "mekanik dövme" aracına kadar tutarsız ama yararlı bir yığın bulgular getiriyorlardı. İşte, "firavun ampirizmi"yle "Yunan rasyonalizminin (kuramsal, akla dayanan. Bilginin deney ve gözlemlere baş vurmadan sadece düşünsel planda elde edilebileceğini savunan
görüş.) birleşmesi, yani tutarsız bulgularla teorik düşünüşün genel bir mantık sentezi içinde kaynaşması, tekniğe "mucize" sayılabilecek bir atılım sağlayacaktır.
Gördüğümüz gibi, o çağa kadar bilim, tekniği yalnızca mimarlıkta ve ayarlı araçlar yapımında destekleyebilmişti. Bu iki alanın dışında teknik, bilim merakından ve eğlenceden öteye gitmiyordu. Böyle olduğunu Mısır mezarlarında bulduğumuz mekanik oyuncaklar da göstermektedir. M.Ö. IV. yüzyıldan kalma, Tarantolu Arşitas'ın yaptığı "uçan kuş" oyuncak değil de nedir? Ne var ki, M.Ö. 284'te Arşimet'in doğumuyla her şey değişti.